HANDFIT: An Algorithm for Automatic Fitting of Continuous Piecewise Regression, with Application to Feature Extraction from Remote Sensing Time Series Data
نویسندگان
چکیده
This work presents the algorithm HANDFIT, an iterative method for continuous piecewise regression with automatic change-points estimation. From an initial guess about the number and positions of the changepoints or hinges, they are iteratively adjusted by Newton-like displacements, with very fast convergence in most cases. The algorithm allows for sufficiently close hinges to be identified, thus reducing the number of changepoints. Examples of applications to feature extraction from remote sensing vegetation indices time series data are presented. Key–Words: Segmented regression, Multiple change-point models, NDVI, MODIS.
منابع مشابه
An Iterative Algorithm for Automatic Fitting of Continuous Piecewise Linear Models
Continuous piecewise linear models constitute useful tools to extract the basic features about the patterns of growth in complex time series data. In this work, we present an iterative algorithm for continuous piecewise regression with automatic change-points estimation. The algorithm requires an initial guess about the number and positions of the change-points or hinges, which can be obtained ...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملIntegration of remote sensing and meteorological data to predict flooding time using deep learning algorithm
Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...
متن کاملSalient regions detection in satellite images using the combination of MSER local features detector and saliency models
Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection. In most of these met...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کامل